Math, asked by rchandra8900, 7 hours ago

If 5x + 7y = 6xy & 4y - 3x = 3xy then solution of this system of equations is

Answers

Answered by xSoyaibImtiazAhmedx
1

Given:-

• \:  \:  \:  \:  \:  \:  \:  5x + 7y = 6xy

 \implies \:  \frac{5x + 7y}{xy}  = 6

\implies \:   \frac{5x}{xy} +  \frac{7y}{xy}   = 6

\implies \:  \color{red} \bold { \frac{5}{y} +  \frac{7}{x}   = 6} \:  \:  -  -  -  -  - (1)

And

• \:  \:  \:  \:  4y - 3x = 3xy

 \implies \frac{4x - 3y}{xy}  = 3

 \implies \:  \frac{4x}{xy}  -  \frac{3y}{xy}  = 3

\implies \: \:  \color{red}  \bold{\frac{4}{y}  -  \frac{3}{x}  = 3} \:  \:  -  -    -  -  (2)

Suppose ,

 \bold{‡ \:  \:  \:  \:  \frac{1}{y}  \rightarrow \: u \: }

\bold{‡ \:  \:  \:  \:  \frac{1}{x}  \rightarrow \: v \: }

So,

eq(1) 5u + 7v = 6 ----------(3)

eq(2) 4u - 3v = 3. ------------(4)

{ we are going to solve those equations by substracting method }

Now,

eq(3) × 4 20u + 28v = 24 ---------(5)

eq(4) × 5 20u - 15v = 15 -----------(6)

~ eq(5) - eq(6)

28v + 15 v = 9

43 v = 9

v = 9/43

By Substituting the value of v in eq (3) we get,

5u +  \frac{7 \times 9}{43}  = 6

 \implies \: 5u +  \frac{63}{43}  = 6

 \implies \: 5u  = 6 -   \frac{63}{43}

 \implies \: 5u  = \frac{195}{43}

 \implies \:   \underline \bold{u \:  =  \frac{39}{43} }

Since ,

~ u = 1/y

→ y = 1/u

→ y = 43/39

And

v = 1/x

→ x = 1/v

→ x = 43/9

Similar questions