Math, asked by achaldoshi23, 1 year ago

If √6 + √2/√6 - √2 = a + √b, then find the values of a and b

Answers

Answered by Aurora34
4
TOPIC: TO RATIONALIZE THE DENOMINATOR

  \frac{\sqrt{6}  +  \sqrt{2}}{ \sqrt{6}  -  \sqrt{2} }  \times  \frac{ \sqrt{6} +  \sqrt{2}  }{\sqrt{6} +  \sqrt{2}}  \\  \\  =   \frac{( \sqrt{6}  +  \sqrt{2})^{2}  }{4}   \\  \\  =  \frac{6 + 2 + 4 \sqrt{3} }{4}  \\  \\  =  \frac{8 + 4 \sqrt{3} }{4}  =  \frac{4(2 +  \sqrt{3} )}{4}  \\  \\  = 2 +  \sqrt{3}

→ on comparing it with a + √b, we have,

★ a= 2 and b= √3


____________________________
Similar questions