Math, asked by Anonymous, 10 months ago

if 6+√3/3-√3=x+√3y, find X & y​

Answers

Answered by BrainlyConqueror0901
19

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x=6}}}

\green{\tt{\therefore{y=-\frac{2}{3}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies 6 +  \frac{ \sqrt{3} }{3}   -  \sqrt{3}  = x +  \sqrt{3}y \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt: \implies Value \: of \: x =?  \\  \\ \tt: \implies Value \: of \: y=?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies 6 +  \frac{ \sqrt{3} }{3}   -  \sqrt{3}  = x +  \sqrt{3}y \\  \\ \tt: \implies  \frac{6 \times 3 +  \sqrt{3} -  \sqrt{3} \times 3  }{3}  = x +  \sqrt{3} y \\  \\ \tt: \implies  \frac{18 +  \sqrt{3} - 3 \sqrt{3}  }{3}  = x +  \sqrt{3}y \\  \\ \tt: \implies  \frac{18 - 2 \sqrt{3} }{3}  = x +  \sqrt{3} y \\  \\ \tt: \implies  \frac{18}{3}  -  \frac{2 \sqrt{3} }{3}  = x +  \sqrt{3} y \\  \\ \tt: \implies 6 -  \frac{2}{ \sqrt{3} } = x +  \sqrt{3} y\\  \\ \text{On \: comparing \: both \: side } \\ \\ \green{\tt: \implies x = 6} \\  \\  \tt: \implies  -  \frac{2}{ \sqrt{3} }  =  \sqrt{3} y \\  \\ \tt: \implies  - 2 =  \sqrt{3}  \times  \sqrt{3} y \\  \\ \tt: \implies  - 2 = 3y \\  \\  \green{\tt: \implies y =  \frac{ - 2}{3} }

Answered by TheVenomGirl
22

\Huge{\underline{\underline {\boxed{\texttt{\red{Answer:-}}}}}}

\sf \: x = 6 \\  \\  \sf \: y =   - \dfrac{2}{3}

\huge{\underline{\underline {\boxed{\texttt{\red{Explanation:-}}}}}}

 \\  \\ \bold{\blue{\large{\boxed{\bigstar{\bf{Given:-}}}}}}</p><p>

 \\  \\ \sf\longmapsto6 +  \dfrac{ \sqrt{3} }{3} -  \sqrt{3} = x +  \sqrt{3} y   \\  \\

\bold{\pink{\large{\boxed{\bigstar{\bf{To find:-}}}}}}

 \\  \\  \implies\sf\ \: Value \:  of \:  x \:  and  \: y \\  \\

  \\ \sf \:Now, \\  \\

 \\  \\ \sf\longmapsto \:6 +  \dfrac{ \sqrt{3} }{3} -  \sqrt{3} = x +  \sqrt{3}y \:  \\  \\

 \\  \\ \sf\longmapsto \:  \dfrac{6 \times 3 +  \sqrt{3} -  3\sqrt{3} }{3}  = x +  \sqrt{3}y \\  \\

 \\  \\ \sf\longmapsto \frac{18 +  \sqrt{3} -  3\sqrt{3}  }{3}  = x + \sqrt{3}y  \\  \\

 \\  \\ \sf\longmapsto \dfrac{18 -  2\sqrt{3} }{3} = x +  \sqrt{3}y \\  \\

 \\  \\ \sf\longmapsto \dfrac{18}{3} -  \dfrac{2 \sqrt{3} }{3} = x +  \sqrt{3}y    \\  \\

\sf\longmapsto \: 6 -  \frac{2}{ \sqrt{3} } = x +  \sqrt{3} y \\  \\

\sf\longmapsto\dfrac{6\sqrt{3}-2}{\sqrt{3}}=x+\sqrt{3}y

\sf\longmapsto6\sqrt{3}-2=\sqrt{3}x+y

On comparing sides,

\sf\:x=6 and \sf\:-2=3y

\sf\longmapsto\:y=\dfrac{-2}{3}

Therefore,

\sf\:x=6\:and \:y=\dfrac{-2}{3}

Similar questions