Math, asked by aayushkumartaneja200, 1 month ago

If -6 and 3 are zeroes of the quadratic polynomial x² + (a+1)x + b, then a and b are:-

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\: - 6 \: and \: 3 \: are \: zeroes \: of \:  {x}^{2} + (a + 1)x + b}

We know that,

\boxed{ \purple{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: - 6 \times 3  = \dfrac{b}{1}

\bf\implies \:b =  - 18

Also,

\boxed{\purple{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: - 6 + 3 =  -  \: \dfrac{(a + 1)}{1}

\rm :\longmapsto\: - 3 =  - a - 1

\rm :\longmapsto\: a =  3 - 1

\bf\implies \:a = 2

ADDITIONAL INFORMATION :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta +   \beta  \gamma  +  \gamma   \alpha =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions