Math, asked by Payal5690, 1 year ago

If 6 cot theta + 2 cosecA theta = cot theta + 5 cosec theta , find the value of cos theta.

Answers

Answered by kunal0912
149
hey 6 cotA + 2 cosec A = cotA + 5cosec A

so, 6*cosA/sinA + 2/sinA = cosA/sinA + 5/sinA

                          = 5 cosA/sinA -3/sinA = 0
                       so, 5cos A-3/sinA =0
                      so , 5 cos A - 3 = 0
                                 cos A = 3/5        

hope this helps plz mark as brainliest

kunal0912: correct h
Payal5690: Ha
kunal0912: okk :)
Answered by smithasijotsl
4

Answer:

The value of cos \theta = \frac{3}{5}

Step-by-step explanation:

Given,

6 cot \theta+ 2 cosec \theta = cot \theta + 5 cosec \theta

To find,

The value of cos \theta

Recall the formula

cot \theta = \frac{cos\theta}{sin\theta}

cosec  \theta = \frac{1}{sin\theta}

Solution:

Given equation is 6 cot \theta+ 2 cosec \theta = cot \theta + 5 cosec \theta

Substituting the value of cot \theta and cosec \theta we get

\frac{cos\theta}{sin\theta} + 2 × \frac{1}{sin\theta} = \frac{cos\theta}{sin\theta}  + 5× \frac{1}{sin\theta}

\frac{6cos\theta + 2}{sin\theta} = \frac{cos\theta+5}{sin\theta}

Since the denominators are equal,

6cos \theta + 2 = cos \theta+5

6cos \theta - cos \theta = 5-2

5cos \theta = 3

cos \theta = \frac{3}{5}

The value of cos \theta = \frac{3}{5}

#SPJ3

Similar questions