Math, asked by parulsh57911, 1 year ago

If 6^(n + 5) - 6^(n + 3) = 7560, What is the value of n?

Answers

Answered by BrainlyPrincess
21
6^{n + 5} - 6^{n + 3} = 7560

\text{Factor the expression}

(6^2 - 1) \times 6^{n + 3} = 7560

\text{Evaluate the power}

(36 - 1) \times 6^{n + 3} = 7560

\text{Subtract the numbers}

35 \times 6^{n + 3} = 7560

\text{Divide both the sides by 35}

6^{n + 3} = 216

\text{Write in exponential form}

6^{n + 3} = 6^3

\text{Set the exponents equal}

n + 3 = 3

\text{Move the terms}

n = 3 - 3

\text{Calculate}

n = 0


\pink{\underline{\pink{\underline{\tt{\red{The\:value\:of\:n\:is\:0}}}}}}
Answered by RealPoet
363
Answer:

0

Step By Step Explanation:

 \mathsf{ {6}^{(n \: + \: 5)} - {6}^{(n \: + \: 3)} = 7560}

 \mathsf { ⇒{6}^{n} \times {6}^{5} - {6}^{n} \times {6}^{3} = 7560}

 \mathsf { ⇒ {6}^{n} ( {6}^{5} - {6}^{3} )= 7560}

 \mathsf{ ⇒ {6}^{n} (7776 - 216) = 7560}

 \mathsf{⇒ {6}^{n} = \frac{7560}{7560} }

 \mathsf{⇒ {6}^{n} = {6}^{0} }

 \therefore{ \mathsf{n = 0}}

Hence, The Required value of n is 0.
Similar questions