Math, asked by deepalimahour, 7 months ago

If 6 sin²θ + 2 cos²θ=7 sinθcosθ then find the value of tan θ. Class 10

Answers

Answered by MaheswariS
1

\textbf{Given:}

6\,sin^2\theta+2\,cos^2\theta=7\,sin\theta\,cos\theta

\textbf{To find:}

\text{The value of}\;\tan\theta

\textbf{Solution:}

\text{Consider,}

6\,sin^2\theta+2\,cos^2\theta=7\,sin\theta\,cos\theta

\text{Divide bothsides by $\sin\theta\,\cos\theta$}

\dfrac{6\,sin^2\theta}{sin\theta\,cos\theta}+\dfrac{2\,cos^2\theta}{sin\theta\,cos\theta}=7

\dfrac{6\,sin\theta}{\cos\theta}+\dfrac{2\,cos\theta}{sin\theta}=7

6\,tan\theta+2\,cot\theta=7

6\,tan\theta+2(\dfrac{1}{tan\theta})=7

6\,tan^2\theta+2=7\,tan\theta

6\,tan^2\theta+7\,tan\theta+2=0

6\,tan^2\theta+4\,tan\theta+3\,tan\theta+2=0

2\,tan\theta(3\,tan\theta+2)+1(3\,tan\theta+2)=0

(2\,tan\theta+1)(3\,tan\theta+2)=0

\implies\,tan\theta=\dfrac{-1}{2},\dfrac{-2}{3}

\textbf{Answer:}

\text{The values of $tan\theta$ are $\dfrac{-1}{2},\,\dfrac{-2}{3}$}.

Similar questions