Math, asked by saimasharma14, 2 months ago

if 6 tan A -5 =0
find:
3 sin A minus cos A / 5 cos A+ 9 Sin A​

Answers

Answered by YagneshTejavanth
0

Answer:

3/25

Step-by-step explanation:

Given

6tan A - 5 = 0

tan A = 5/6

Now coming back to expression

 \sf   = \dfrac{3sinA - cosA}{5cosA + 9sinA}

Multiplying both numerator and denominator by cos A

 \sf   = \dfrac{3sinA - cosA}{5cosA + 9sinA} \times  \dfrac{cosA}{cosA}

 \sf   = \dfrac{3sinA - cosA}{cosA } \times  \dfrac{cosA}{5cosA + 9sinA}

 \sf   = \dfrac{3sinA - cosA}{cosA }  \div  \dfrac{5cosA + 9sinA}{cosA}

 \sf   = \bigg( \dfrac{3sinA }{cosA }  -  \dfrac{cosA}{cosA}  \bigg) \div  \bigg( \dfrac{5cosA}{cosA}  + \dfrac{9sinA}{cosA} \bigg)

 \sf   = \dfrac{ 3tanA  -  1}{ 5+ 9tanA}

 \sf   = \dfrac{ 3 \bigg( \dfrac{5}{6} \bigg)   -  1}{ 5+ 9 \bigg( \dfrac{5}{6} \bigg) }

 \sf   = \dfrac{  \dfrac{5}{2}    -  1}{ 5+  \dfrac{15}{2}  }

 \sf   = \dfrac{  \dfrac{5 - 2}{2} }{  \dfrac{10 + 15}{2}  }

 \sf   = \dfrac{  \dfrac{3}{2} }{  \dfrac{25}{2}  }

 \sf   =   \dfrac{3}{25}

Similar questions