Math, asked by rajasreeajaykoramuni, 4 months ago

If 6 times of term of an A. P equal to 8 times of its 8th term then show that on 14 th term​

Answers

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{6 \: a_6 \:  =  \: 8 \: a_8}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  show -   \begin{cases} &\sf{a_{14} \:  =  \: 0}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

\large\underline\purple{\bold{Solution :-  }}

Let the first term of an AP series is 'a' and common difference is 'd'.

Tʜᴜs,

↝ 6ᵗʰ term is,

 \begin{gathered}\bf{a_6\:=\:a\:+\:(6\:-\:1)\:d} \\ \end{gathered}

 \tt :  \implies \: a_6 \:  =  \: a \:  +  \: 5d

And

↝ 8ᵗʰ term is,

 \begin{gathered}\bf{a_8\:=\:a\:+\:(8\:-\:1)\:d} \\ \end{gathered}

 \tt :  \implies \: a_8 \:  =  \: a \:  + 7d

Now, According to statement,

 \tt :  \implies \: 6 \: a_6 \:  =  \: 8 \: a_8

 \tt :  \implies \: 6 \: (a + 5d) = 8 \: (a + 7d)

 \tt :  \implies \: 6a \:  +  \: 30d = 8a \:  +  \: 56d

 \tt :  \implies \: 8a \:  - 6a \:  + 56d \:  -  \: 30d  \:  =  \: 0

 \tt :  \implies \: 2a \:  +  \: 26d \:  =  \: 0

 \tt :  \implies \: a \:  +  \: 13d \:  =  \: 0

 \tt :  \implies \: a \:  +  \: (14 \:  -  \: 1)d \:  = 0

 \tt :  \implies \: a_{14} \:  =  \: 0

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information: -

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} (2\:a\:+\:(n\:-\:1)\:d)}}}}}} \\ \end{gathered}

Or

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} (\:a\:+\:a_n)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Sₙ is the sum of  n term.

Similar questions