if 6/x=1/a+1/b. show that (x+3a)/(x-3a)+ (x+3b)/(x-3b)=2, a≠b
Answers
Answered by
0
Answer:
Step-by-step explanation:
6/x = 1/a + 1/b
=> 6/x = a + b / ab
=> x = 6ab/a+b
=> x/3a = 2b/a+b - ----- (1)
Apply compendo and divdendo using (1),
x + 3a/ x-3a = 2b + a + b / 2b - (a+b) = 3b + a / b - a
Again,
x = 6ab/a + b => x/3b = 2a/a+b ------------- (2)
Apply Compendo and dividendo on (2)
x + 3b/ x - 3b = 2a + a + b / 2a -(a+b) = 3a + b / a - b
L.H.S:
(x+3a)/(x-3a) + (x+3b)/(x-3b)
= 3b + a / b - a + 3a + b / a- b
= 1/a-b[ - 3b - a + 3a + b]
= 2a - 2b / a - b
= 2(a - b) / a - b
= 2.
= R.H.S
Hence proved.
Similar questions