Math, asked by Guitarboy, 9 hours ago

If 6^x * 8^y = 27 find the the value of x + y.​

Answers

Answered by Steph0303
16

Answer:

Let us simplify the numbers in powers of 2 and 3.

\implies 6^x = 2^x \times 3^x\\\\\implies 8^y = (2^3)^y = 2^{3y}\\\\\implies 27 = 3^3

According to the question,

\implies 6^x \times 8^y = 27\\\\\text{Transposing }8^y \text{ to the RHS, we get:}\\\\\implies 6^x = \dfrac{27}{8^y}\\\\\implies 6^x = 27 \times 8^{-y}

Converting the numbers into simple terms we get:

\implies 2^x \times 3^x = 3^3 \times 2^{-3y}

Comparing the corresponding powers of bases 2 and 3 from LHS and RHS we get:

⇒ x = -3y and x = 3

Since we know the value of x from the second equation (x=3), we get:

⇒ y = x/(-3)

⇒ y = 3/(-3)

⇒ y = -1

Hence the value of 'x' is 3 and 'y' is -1.

Therefore the value of x + y = 3 - 1 = 2.

Answered by SparklingThunder
27

 \purple {\huge \bf  \underline{\underline{Question : }}}

If 6^x * 8^y = 27 Find the the value of x + y.

 \purple {\huge \bf  \underline{\underline{ Answer: }}}

 \bf x + y = 2

 \purple {\huge \bf  \underline{\underline{ Explanation: }}}

 \bf {6}^{ \: x}   \times  {8}^{ \: y}  = 27 \:  \:  -  -  -  - (1)

 \bf {6}^{ \: x}  =  {(2 \times 3)}^{ \: x}  =  {2}^{ \: x}  \times  {3}^{ \: x}

 \bf {8}^{ \: y}  =  {(2 \times 2 \times 2)}^{ \: y}  =   { ({2}^{3} )}^{ \: y}

 \bf27 =  {3}^{3}

\bf Putting \:above \: value \: in \: eq.(1)

 \bf {2}^{ \: x} \times  {3}^{ \: x}    \times  { ({2}^{3}) }^{ \: y}  =  {3}^{3}   \\  \\ \bf {2}^{ \: x} \times  {3}^{ \: x}  =  \frac { {3}^{3} }{{ {2}}^{ \: 3y}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf {2}^{ \: x} \times  {3}^{ \: x}  =   {3}^{3}  \times  {2}^{ - 3y}

Comparing the corresponding powers of bases 2 and 3 from LHS and RHS , we get :

  \boxed{\bf x =  - 3y} \:  \:  , \:  \:  \boxed{ \bf x = 3}

 \bf Putting \: x =3 \: in \:eq. \:  x =  - 3y

 \bf \: 3 =  - 3y \\  \\  \bf y =  \frac{3}{ - 3}  \\  \\  \bf y =  - 1

  \bf\therefore \:  \boxed{ \bf x = 3} \:  \:  ,\:  \: \boxed{ \bf y =  - 1}

 \bf Value \: of \: x + y  \\  \\  \bf \implies3 + ( - 1) \:  \:     \\  \\  \bf \implies3 - 1 \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bf \implies2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions