Math, asked by gen06, 11 months ago

if 64 power x = 2√2 then x is​

Answers

Answered by 007Boy
19

Answer:

64 {}^{x}  = 2 \sqrt{2}  \\  = 64 {}^{x}  = 2 \times 2 {}^{ \frac{1}{2} } \\  = 2 {}^{6x}   = 2 {}^{ \frac{3}{2} }  \\  = 6x =  \frac{3}{2}  \\  = x =  \frac{3}{12}

Here is your solution.. Thanks

Answered by InfiniteSoul
9

{\huge{\boxed {\rm{\purple {Q}}{\orange{U}}{\red{E}}{\green{S}}{\pink{T}}{\blue{I}}{\red{o}}{\green{n}}}}}

 if 64^x = 2\sqrt{2} then \: find \: x

{\huge{\boxed {\rm{\purple {A}}{\orange{N}}{\red{S}}{\green{W}}{\pink{E}}{\blue{R}}}}}

\sf\implies 64 ^x = 2\sqrt{2}

\sf\implies 2^{6x} = 2\times 2 ^{\frac{1}{2}}

  •  x^a\times  x^b = x ^{a+b}

\sf\implies 2^{6x} = 2 ^{1 + \frac{1}{2}}

  • if the bases are equal then power will also be equal and vice versa

\sf\implies 6x = 1 + \dfrac{1}{2}

\sf\implies 6x = \dfrac{2+1}{2}

\sf\implies 6x = \dfrac{3}{2}

\sf\implies x = \dfrac{\cancel 3}{2\times\cancel 6}

\sf\implies x = \dfrac{1}{4}

{\bold{\blue{\boxed{\bf{x = \dfrac{1}{2}}}}}}

Similar questions