Math, asked by swattikSarkar, 1 year ago

If (64)^x = (48)^y = (36)^z show that 1/x + 1/z = 2/y​

Answers

Answered by apoorv10dbms2020
10

Answer:

let \:  {64}^{x}  =  {48}^{y}  =  {36}^{z}  = k \\ so \\ 64 =  {k}^{ \frac{1}{x} }  \\ 48 =  {k}^{ \frac{1}{y} }  \\ 36 =  {k}^{ \frac{1}{z} }  \\ now  \\ 64 \times 36 =  {48}^{2}  \\ or \\  {k}^{ \frac{1}{x} }  \times  {k}^{ \frac{1}{z} }  =  {( {k}^{ \frac{1}{y} } )}^{2}  \\  {k}^{ \frac{1}{x} +  \frac{1}{z}  }  =  {k}^{ \frac{2}{y} }  \\ or \\  \frac{1}{x}  +  \frac{1}{z}  =  \frac{2}{y}

Similar questions