Math, asked by sailandharnath, 11 months ago

if 6cosa - sina= 4
then find 6cosa + sina.​

Answers

Answered by ram2579
1

Answer:

- 4

Step-by-step explanation:

the answer of your question is -4

Answered by harendrachoubay
0

The value of 6\sin A +\cos A =  ± \sqrt{21}

Step-by-step explanation:

Given,

6\cos A -\sin A= 4              ........ (1)

Let 6\sin A +\cos A= x        ........ (2)

To find, the value of 6\sin A +\cos A = ?

Squaring and adding equations (1) and (2), we get

(6\cos A -\sin A)^2+(6\sin A +\cos A)^2= 4^2+x^2

36\cos^2 A +\sin^2 - 12\cos A\sin A+36\sin^2 A +\cos^2A+12\cos A\sin A= 4^2+x^2

36\cos^2 A +\sin^2+36\sin^2 A +\cos^2A= 4^2+x^2

36(\cos^2 A +\sin^2A)+(\sin^2 A +\cos^2A)=16+x^2

36(1)+1=16+x^2

Using the trigonometric identity,

\cos^2 A +\sin^2A = 1

⇒ 36 + 1 = 16 + x^2

⇒ 37 = 16 + x^2

x^2 = 37 - 16 = 21

∴ x = ± \sqrt{21}

Thus, the value of 6\sin A +\cos A =  ± \sqrt{21}

Similar questions