Math, asked by kshitijt502, 1 year ago

If 6th term of an ap. Is -10 and it's 10 term is -26,then find first term and difference

Answers

Answered by manthan7445
1
here is your answer bro hope it helps!!!
Attachments:
Answered by Anonymous
32

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • 6th term of an ap is -10

 \:\:

  • 10 th term is -26

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • First term and common difference

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

\purple\longrightarrow  \bf a_n = a + (n - 1)d

 \:\:

Below are the each term used above

 \:\:

  •  \rm a_n = nth term

 \:\:

  • a = First term

 \:\:

  • n = Number of term

 \:\:

  • d = Common difference

 \:\:

We are given that the 6th term of is -10

 \:\:

So,

 \:\:

 \sf \longmapsto -10 = a + (6 - 1)d

 \:\:

 \bf \dashrightarrow  a + 5d = -10 -----(1)

 \:\:

Also,

 \:\:

10 th term is -26

 \:\:

So,

 \sf \longmapsto -26 = a + (10 - 1)d

 \:\:

 \sf \longmapsto -26 = a + 9d

 \:\:

 \bf \dashrightarrow -a - 9d = 26 -------(2)

 \:\:

 \underline{\bold{\texttt{Adding (1) \& (2)}}}

 \:\:

 \sf \longmapsto a + 5d - a - 9d = -10 + 26

 \:\:

 \sf \longmapsto -4d = 16

 \:\:

 \sf \longmapsto d = \dfrac { 16 } { -4 }

 \:\:

 \bf \dashrightarrow d = -4

 \:\:

 \underline{\bold{\texttt{Putting d = -4 in (1)}}}

 \:\:

 \sf \longmapsto  a + 5(-4)= -10

 \:\:

 \sf \longmapsto a - 20 = -10

 \:\:

 \sf \longmapsto a = -10 + 20

 \:\:

 \bf \dashrightarrow a = 10

 \:\:

Hence First term is 10 & common difference is -4

\rule{200}5

Similar questions