if 6x/(2x^2+5x-2)=1,x>0,then find value of x^3+1/x^3
Answers
Answered by
1
Given : 6x/(2x²+5x-2)=1, x>0
To find : x^3+ 1/x^3 x³ + 1/x³
Step-by-step explanation:
6x/(2x² + 5x - 2) = 1
=> 2x² + 5x - 2 = 6x
=> 2x² - x - 2 = 0
=> x = (1 ± √1 + 16) / (2* 2)
=> x = ( 1 ± √17)/4
x>0
=> x = ( √17 + 1 )/4
1/x = 4/(√17 + 1 ) = 4(√17 - 1) / ( 17 - 1) = (√17 - 1 )/4
x = ( √17 + 1 )/4 , 1/x = (√17 - 1 )/4
x + 1/x = 2√17/4 = √17 / 2
x³ + 1/x³ = (x + 1/x)³ -3x(1/x)(x + 1/x)
= (√17 / 2 )³ - 3(√17 / 2)
= 17√17 / 8 - 12√17 / 8
= 5√17 / 8
x³ + 1/x³ = 5√17 / 8
Learn More:
X^3+1/x^3=756 then x^4+1/x^4
https://brainly.in/question/12919188:
If x²-y²= 12 and x³+y³ = 72, find the value of x and y - Brainly.in
https://brainly.in/question/8403056
Similar questions