Math, asked by krishsonkar13, 1 month ago

if 6x² - 1 = 4x then show that - 36x²+1/x²=28​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: {6x}^{2} - 1 = 4x

On dividing both sides by x, we get

\rm :\longmapsto\:\dfrac{ {6x}^{2}  - 1}{x}  = \dfrac{4x}{x}

\rm :\longmapsto\:6x - \dfrac{1}{x} = 4

On squaring both sides, we get

\rm :\longmapsto\: {\bigg[6x - \dfrac{1}{x} \bigg]}^{2} =  {4}^{2}

We know,

\boxed{ \tt{ \:  {(x - y)}^{2} =  {x}^{2} - 2xy +  {y}^{2} \: }}

So,

\rm :\longmapsto\: {36x}^{2} + \dfrac{1}{ {x}^{2} } - 2 \times 6x \times \dfrac{1}{x} = 16

\rm :\longmapsto\: {36x}^{2} + \dfrac{1}{ {x}^{2} } - 12 = 16

\rm :\longmapsto\: {36x}^{2} + \dfrac{1}{ {x}^{2} }  = 16 + 12

\rm \implies\:\boxed{ \tt{ \: {36x}^{2} + \dfrac{1}{ {x}^{2} }  = 28 \: }}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions