Math, asked by RiffathSayed, 9 months ago

If √7-1/√7+1 - √7+1/√7-1 = a+b√7, find the value of a and b​

Answers

Answered by trinoyjyotipegu
0

Answer:

We have:

\dfrac{\sqrt{7}-1}{\sqrt{7}+1} -\dfrac{\sqrt{7}+1}{\sqrt{7}-1}

7

+1

7

−1

7

−1

7

+1

= a + b\sqrt{7}

7

We have to find, the values of a and b are:

Solution:

∴ \dfrac{\sqrt{7}-1}{\sqrt{7}+1} -\dfrac{\sqrt{7}+1}{\sqrt{7}-1}

7

+1

7

−1

7

−1

7

+1

= a + b\sqrt{7}

7

Rationalising numerator and denominator, we get

\dfrac{\sqrt{7}-1}{\sqrt{7}+1}\times \dfrac{\sqrt{7}-1}{\sqrt{7}-1} -\dfrac{\sqrt{7}+1}{\sqrt{7}-1}\times \dfrac{\sqrt{7}+1}{\sqrt{7}+1}

7

+1

7

−1

×

7

−1

7

−1

7

−1

7

+1

×

7

+1

7

+1

= a + b\sqrt{7}

7

Using the algebraic identity:

(a + b)(a - b) = a^{2} -b^{2}a

2

−b

2

⇒ = a + b\sqrt{7}

7

⇒ = a + b\sqrt{7}

7

⇒ = a + b\sqrt{7}

7

Using the algebraic identity:

(a-b)^2(a−b)

2

- (a+b)^2(a+b)

2

= - 4ab

⇒ = a + b\sqrt{7}

7

⇒ = a + b\sqrt{7}

7

⇒ 0 + \sqrt{7}

7

= a + b\sqrt{7}

7

......... (i)

Comparing both sides, we get

a = 0 and b = \dfrac{-2}{3}

3

−2

∴ a = 0 and b = \dfrac{-2}{3}

3

−2

Thus, the values of a and b are "0 and \dfrac{-2}{3}

3

−2

".

Similar questions