Math, asked by nivanganesh, 1 month ago

If 7√3/√10+√3 = a+b√10 then find the value of a/b

Answers

Answered by abhinavmike85
24

\fbox{\fbox{\fbox{\fbox{\huge{\underline{\underline{\underline{\sf{\pink{Answer}}}}}}}}}}

-\sqrt{3}\\\\\\

\fbox{\fbox{\fbox{\fbox{\huge{\underline{\underline{\sf{\red{Steps}}}}}}}}}

LHS:

 \dfrac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }

Rationalising numerator and denominator,

 \dfrac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }  \times  \dfrac{ \sqrt{10} -  \sqrt{3}  }{ \sqrt{10} -  \sqrt{3}  }  \\  \\  \dfrac{7 \sqrt{3} ( \sqrt{10} -  \sqrt{3} ) }{ ({ \sqrt{10}) }^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  \dfrac{7 \sqrt{30} - 21 }{10 - 3}  \\  \\  \dfrac{7 \sqrt{30}  - 7 \times 3}{7}  \\  \\  \frac{\not{7}( \sqrt{3}   \times  \sqrt{10} - 3)  }{\not{ 7}}  \\  \\  \sqrt{3}  \times  \sqrt{10}  - 3 \\  \\  - 3 +  \sqrt{3}  \times  \sqrt{10}  = a + b \times  \sqrt{10}

Comparing the values we get:

a = -3 and b = \sqrt{3}

\\\\\fbox{\fbox{\fbox{\fbox{\huge{\underline{\underline{\sf{\green{Hope\:it\:helps}}}}}}}}}

Similar questions