Math, asked by ramsurath, 2 months ago

if 7√3/√10+√3 plz ans fast with explanation ​

Attachments:

Answers

Answered by ImperialGladiator
6

Answer:

 \implies \dfrac{a}{b}  = \dfrac{ - 3}{ \sqrt{3}}

Explanation:

Given,

 \implies \:  \dfrac{7 \sqrt{3} }{ \sqrt{10}  +  \sqrt{3} }  = a + b \sqrt{10}

Taking L. H. S. :-

 =  \dfrac{7 \sqrt{3} }{ \sqrt{10}  +  \sqrt{3} }

Rationalizing the denominator,

  =  \dfrac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }   \times  \dfrac{ \sqrt{10}  -  \sqrt{3} }{ \sqrt{10}  -  \sqrt{3} }

{ =  \dfrac{(7 \sqrt{3})( \sqrt{10}  -  \sqrt{3} ) }{ {( \sqrt{10}) }^{2}  -  {( \sqrt{3}) }^{2} } \:\:\:\:\:\:\:\:\: \boldsymbol{[\because (a + b)(a - b) = a^2 - b^2]}}

 =  \dfrac{7 \sqrt{30}  - 21}{10 - 3}

 =  \dfrac{7 \sqrt{30}  - 21}{7}

 =  \dfrac{7 \sqrt{30} }{7}  -  \dfrac{21}{7}

 =  \sqrt{30}  - 3

On comapring with R. H. S. :- a + b√3

\implies \:  \sqrt{30}  - 3 =  a+ b \sqrt{10}

\implies \:  - 3 +  \sqrt{30}  =a  + b \sqrt{10}

\implies \: a =  - 3 \: { \rm \: and} \: b =  \sqrt{3}

Hence,

 \implies \dfrac{a}{b}  =  \dfrac{ - 3}{ \sqrt{3} }

 \orange{ \underline{ \therefore\sf \: Required \: answer :  \green{  \dfrac{ - 3}{ \sqrt{3} }} }}

_____________________

Identity used -

  • (a + b)(a - b) = a² - b²
Similar questions