Math, asked by manojsinghmehta123, 9 months ago

If 7+3 root 5/3+ root 5 - 7-3 root 5/3- root 5=p+q root 5 Find value of p and q​

Answers

Answered by rajivrtp
1

Step-by-step explanation:

7+3√5/3 +√5 - 7-3√5/3 - √5 = p+q√5

LHS

= 7+ √5 +√5 - 7 - √5 - √5

= (7-7) + ( 2√5 - 2√5)

= 0 + 0

= 0

Therefore RHS =>

p+q√5= 0

=> p : q = - √5 : 1

thus infinite number of solutions can be found

which ratios are -√5 : 1.

Answered by sandy1816
2

\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} } = p + q \sqrt{5}   \\  \\    \frac{(7 + 3 \sqrt{5} )(3 -  \sqrt{5}) - (7 - 3 \sqrt{5} )(3 +  \sqrt{5} ) }{9 - 5}   = p + q \sqrt{5} \\  \\    \frac{21 - 7 \sqrt{5} + 9 \sqrt{5}   - 15 - 21 - 7 \sqrt{5} + 9 \sqrt{5}  + 15 }{4}  = p + q \sqrt{5}  \\  \\    \frac{4 \sqrt{5} }{4} = p + q \sqrt{5}   \\  \\    \sqrt{5}  = p + q \sqrt{5}  \\  \\ comparing \: both \: sides \: we \: get \\ p = 0 \:  \:  \:  \:  \:  \:  \: q = 1

Similar questions