Math, asked by krishan1965, 1 year ago

if 7 + 3 root 5 upon 3 + root 5 minus 7 minus 3 root 5 upon 3 minus root 5 is equal to a + b root 5 then find a and b

anyone solve it plz. ​

Answers

Answered by amitraja26
6
a = 0

b = 1..................
Attachments:
Answered by aquialaska
9

Answer:

Value of a is 0 and Value of b is 1.

Step-by-step explanation:

Given: \frac{7+3\sqrt{5}}{3+\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}=a+b\sqrt{5}

We need to find value of a and b.

We use rationalization of denominator to simply the LHS of given expression.

Consider,

LHS  

\frac{7+3\sqrt{5}}{3+\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}

=\frac{7+3\sqrt{5}}{3+\sqrt{5}}\times\frac{3-\sqrt{5}}{3-\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}\times\frac{3+\sqrt{5}}{3+\sqrt{5}}

=\frac{(7+3\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}-\frac{(7-3\sqrt{5})(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}

=\frac{21+9\sqrt{5}-7\sqrt{5}-3(5)}{(3)^2-(\sqrt{5})^2}-\frac{21+7\sqrt{5}-9\sqrt{5}-3(5)}{(3)^2-(\sqrt{5})^2}

=\frac{6+2\sqrt{5}}{9-5}-\frac{6-2\sqrt{5}}{9-5}

=\frac{6+2\sqrt{5}-(6-2\sqrt{5})}{4}

=\frac{6+2\sqrt{5}-6+2\sqrt{5}}{4}

=\frac{4\sqrt{5}}{4}

=\sqrt{5}

Now by comparing with RHS

a = 0  and b = 1

Therefore, Value of a is 0 and Value of b is 1.

Similar questions