Math, asked by Gouriheera, 11 months ago

If (7-4root 3)x^2+4x+3+(7+4 root 3)x^2-4x+3=14,then the value of x is given by​

Attachments:

Answers

Answered by roshinik1219
5

Given:

           (7 + 4\sqrt{3} )^{x^2 - 4x + 3} + (7 - 4\sqrt{3} )^{x^2 - 4x + 3} = 14

To Find:

           The value of x

Solution:

Let

      (7 + 4\sqrt{3} )^{x^2 - 4x + 3} = y.

Then,

The given equation becomes,

⇒     y + \frac{1}{y}  = 14

⇒    y^2 - 14x + 1 = 0

⇒    y = \sqrt{ 4 +_- \sqrt{(196 - 4)}}

⇒   y = 7 +_-4\sqrt{3}

⇒   (7 + 4\sqrt{3} )^{x2 - 4x + 3} = 7 +_- 4\sqrt{3}

⇒    (7 + 4\sqrt{3} )^{x2 - 4x + 3} = (7 +_- 4\sqrt{3})^1

(7 + 4\sqrt{3} )^{x^2 + 4x + 3} = (7 - 4\sqrt{3} ) = (7 + 4\sqrt{3} )^{-1}

since,

           7 - 4\sqrt{3}  = \frac{1}{7 + 4\sqrt{3}}

⇒     x^2 - 4x + 3 = 1 \ or\ x^2 - 4x + 3 = -1

⇒    x^2 - 4x + 2 = 0 \or, \ x^2 - 4x + 4 = 0

⇒   x = \frac{4 +_- \sqrt{16-8}}{2}  \ or \ (x - 2)^2 = 0

⇒  x = 2+_- \sqrt{2} , 2

Hence, the roots of the given equation are x = 2+_- \sqrt{2} , 2

Answered by QueenOfKnowledge
4

Answer:

Value of x can be

  2 +  \sqrt{2}

2 -  \sqrt{2}

and

2

Attachments:
Similar questions