Math, asked by Marchii566, 3 months ago

If (7 + √5)/(7 - √5) = a + 7√5b , then a , b = ? ​

Answers

Answered by Anonymous
7

We have ;

  • (7 + √5)/(7 - √5) = a + 7√5b

Rationalising the denominator of the term in LHS , we get ;

= (7 + √5)²/(7 - √5)(7 + √5) = a + 7√5b

= [7² + (√5)² + 2•7•√5]/[7² - (√5)²] = a + 7√5b

= (49 + 5 + 14√5)/(49 - 5) = a + 7√5b

= (54 + 14√5)/44 = a + 7√5b

= 54/44 + 14√5/44 = a + 7√5b

= 27/22 + 7√5/22 = a + 7√5b

= 27/22 + 7√5•(1/22) = a + 7√5b

Now ,

Comparing both the sides , we get ;

a = 27/22 , b = 1/22

______________________________

Answered by suteekshna369
0

Step-by-step explanation:

a=

22

27

andb=

2

1

Step-by-step explanation:

Given: \frac{7+\sqrt{5}}{7-\sqrt{5}}=a+\frac{5}{11}\sqrt{5}b

7−

5

7+

5

=a+

11

5

5

b

To find: value of a and b

First we rationalize the denominator of LHS and them compare the answer with RHS to find value of a & b

LHS=\frac{7+\sqrt{5}}{7-\sqrt{5}}LHS=

7−

5

7+

5

=\frac{7+\sqrt{5}}{7-\sqrt{5}}\times\frac{7+\sqrt{5}}{7+\sqrt{5}}=

7−

5

7+

5

×

7+

5

7+

5

=\frac{(7+\sqrt{5})(7+\sqrt{5})}{(7-\sqrt{5})(7+\sqrt{5})}=

(7−

5

)(7+

5

)

(7+

5

)(7+

5

)

=\frac{7^2+(\sqrt{5})^2+14\sqrt{5}}{7^2-(\sqrt{5})^2}=

7

2

−(

5

)

2

7

2

+(

5

)

2

+14

5

=\frac{49+5+14\sqrt{5}}{49-5}=

49−5

49+5+14

5

=\frac{54+14\sqrt{5}}{44}=

44

54+14

5

=\frac{54}{44}+\frac{14\sqrt{5}}{44}=

44

54

+

44

14

5

=\frac{27}{22}+\frac{7\sqrt{5}}{22}=

22

27

+

22

7

5

RHS=a+\frac{7}{11}\sqrt{5}bRHS=a+

11

7

5

b

\implies a=\frac{27}{22}⟹a=

22

27

\implies \frac{7}{11}\sqrt{5}b=\frac{7\sqrt{5}}{22}⟹

11

7

5

b=

22

7

5

b=\frac{1}{2}b=

2

1

Therefore, a=\frac{27}{22}\:\:and\:\:b=\frac{1}{2}a=

22

27

andb=

2

1

Similar questions