Math, asked by Maabroor, 9 months ago

If 7/8 part of a container is full of water, then the weight is 21 kg and if 3/4 part is full, the weight is 19 kg. What is the weight of the container?

Answers

Answered by yadavayushman62
1

Answer:

x \times \frac{7}{8}  = 63 \\ x = 21 \times   \frac{8}{7 } \\ x = 24

this is your answer

Answered by Anonymous
70

  \large{\red{ \bf{ \underline {\underline{Answer}}}}} \\  \\  \purple{ \sf{\mapsto Weight \: of \: container \: is \: 7 \: kg}} \\  \\   \mathrm{\green{ \underline{Given}}} \\  \\  \sf{ \rightsquigarrow A \: container \:  \frac{7}{8}\: full \: of \: water \: weight \: 21 \: kg.} \\   \sf{When \: it \: i \:  \frac{3}{4}th \: full \: of \: water \: it \: weight \: 19 \: kg.} \\ \\ \mathrm  {\blue{ \underline{ To \: Find}}} \\  \\  \sf{ \rightsquigarrow The \: weight \: of \: empty \: container =\:?}

⠀⠀

  • According to given question

⠀⠀

 \sf{Let \: the \: weight \: of \: container \: be \:  x \: kg} \\  \\  \sf{And \: weight \: of \:full \: container \: value \: be \: x} \\  \\  \sf{By \: the \: problem } \\  \\  \sf{ \implies x +  \frac{7}{8}\:y  = 21  \: -  -  -  - (1)} \\  \\  \sf{Similarly,} \\  \\  \sf{ \implies x +  \frac{3}{4}\:y = 19 \:  -  -  -  - (2) } \\  \\  \rm{Substractin \: equation \: (1) \: and \: equation \: (2) } \\  \\  \sf{ \implies   \left(x +  \frac{7}{8}\:y = 21 \right) - \left( x +  \frac{3}{4}\:y = 19  \right) } \\  \\  \sf{ \implies  \frac{1}{8} \:y = 2} \\  \\  \sf{ \implies y = 8 \times 2} \\  \\ \sf{ \implies y = 12} \\  \\  \rm{Putting \: value \: of \: y \: in \: equation \: (1)} \\  \\  \sf{ \implies x +  \frac{7}{ \cancel{8}}  \times  \cancel{16} = 21 } \\  \\  \sf{ \implies x + 7 \times 2 = 21} \\  \\  \sf{ \implies x + 14 = 21} \\  \\  \sf{ \purple{ \implies}} \purple{ \underline{ \boxed{ \sf{x = 7 \: kg}}}}

\sf{\purple{\therefore\:\: Weight\: of\: Container\: is\: 7 \:Kg.}}

Similar questions