Math, asked by sindhu0005, 9 months ago

If 7 cos theta - 24 sin theta = 0 then find cos theta + sin theta.​

Answers

Answered by BrainlyPopularman
24

GIVEN :

 \\\bf \implies 7 \cos( \theta) - 24 \sin( \theta) = 0\\

TO FIND :

 \\\bf \implies \cos( \theta)  + \sin( \theta) = ?\\

SOLUTION :

 \\\bf \implies 7 \cos( \theta) - 24 \sin( \theta) = 0\\

• We know that –

 \\\bf \to \cos^{2} ( \theta)  + \sin ^{2} ( \theta) = 1\\

 \\\bf \to \cos^{2} ( \theta)  = 1 -\sin ^{2} ( \theta)\\

 \\\bf \to \cos( \theta)  =  \sqrt{1 -\sin ^{2} ( \theta)}\\

• So that –

 \\\bf \implies 7\sqrt{1 -\sin ^{2} ( \theta)}- 24 \sin( \theta) = 0\\

 \\\bf \implies 7\sqrt{1 -\sin ^{2} ( \theta)} = 24 \sin( \theta) \\

• Square on both sides –

 \\\bf \implies 49(1 -\sin ^{2} \theta)= 576 \sin^{2} ( \theta) \\

 \\\bf \implies 49 -49\sin ^{2} (\theta)= 576 \sin^{2} ( \theta) \\

 \\\bf \implies 49 = 49\sin ^{2} (\theta) + 576 \sin^{2} ( \theta) \\

 \\\bf \implies 49 =625 \sin^{2} ( \theta) \\

 \\\bf \implies  \sin^{2} ( \theta) =  \dfrac{49}{625} \\

 \\\bf \implies  \sin( \theta) = \sqrt{ \dfrac{49}{625}} \\

 \\\large \implies { \boxed{ \bf \sin( \theta) = \dfrac{7}{25}}} \\

• And –

 \\\bf \implies \cos( \theta)  =  \sqrt{1 - \bigg(  \dfrac{7}{25} \bigg)^{2}}\\

 \\\bf \implies \cos( \theta)  =  \sqrt{1 - \bigg(  \dfrac{49}{625} \bigg)}\\

 \\\bf \implies \cos( \theta)  =  \sqrt{\dfrac{625 - 49}{625}}\\

 \\\bf \implies \cos( \theta)  =  \sqrt{\dfrac{576}{625}}\\

 \\\large \implies { \boxed{ \bf\cos( \theta) = \dfrac{24}{25}}}\\

• Now –

 \\\bf \implies \cos( \theta)  + \sin( \theta) =  \dfrac{24}{25} +  \dfrac{7}{25}  \\

 \\ \large \implies { \boxed{ \bf\cos( \theta)  + \sin( \theta) =  \dfrac{31}{25}}}\\

Similar questions