If 7 cosec θ =25, find the value of sin θ + cos θ.
Answers
Answered by
2
Answer:
31/25
Step-by-step explanation:
Given:
7 cosec θ = 25
To find:
sin θ + cos θ = ?
Solution:
7 cosec θ = 25
⇒ cosec θ = 25 ÷ 7
⇒ Hypotenuse ÷ Opposite side = 25 ÷ 7
So,
- Hypotenuse = 25
- Opposite side = 7
Let us construct a right-angled triangle for this situation.
(Diagram in attachment)
By Pythagoras Theorem,
(AC)² = (AB)² + (BC)²
⇒ 25² = 7² + BC²
⇒ BC² = 25² - 7²
⇒ BC² = 625 - 49
⇒ BC² = 576
⇒ BC = √576
⇒ BC = 24
Now,
sin θ = Opposite side ÷ Hypotenuse
Finding cos θ:
cos θ = Adjacent side ÷ Hypotenuse
sin θ + cos θ
Attachments:
Similar questions