Math, asked by chakraratikanta, 6 days ago

If 7^ m *7^ 4 *7^ 3 7^ 3 =7^ 6 , find the value of m​

Answers

Answered by anindyaadhikari13
4

Solution:

Given That:-

 \rm \longrightarrow {7}^{m} \times  {7}^{4} \times  {7}^{3}  \times  {7}^{3}  =  {7}^{6}

We know that:-

 \rm \longrightarrow {x}^{a} \times  {x}^{b}  \times  {x}^{c} ... =  {x}^{a+b+c+...}

Therefore, we get:-

 \rm \longrightarrow {7}^{m + 4 + 3 + 3} =  {7}^{6}

 \rm \longrightarrow {7}^{m + 10} =  {7}^{6}

Comparing base, we get:-

 \rm \longrightarrow m + 10 = 6

 \rm \longrightarrow m =  - 4

Therefore, the value of m satisfying the given equation is -4.

Learn More:

Laws of exponents.

If a, b are positive real numbers and m, n are rational numbers, then the following results hold.

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Similar questions