if 7 + root 5 / 7 minus root 5 minus 7 minus root 5 / 7 + root 5 is equal to a + b root 5 find the values of a and b
Answers
Answered by
18
Heya !!!
7 + ✓5 / 7 - ✓5 - 7 - ✓5 / 7 + ✓5 = A + B✓5
LHS = 7 + ✓5/ 7 - ✓5 - 7 - ✓5 / 7 + ✓5
=> ( 7 + ✓5) ( 7 + ✓5) - ( 7 - ✓5 ) ( 7 - ✓5) / ( 7 + ✓5 ) ( 7 - ✓5)
=> (7+✓5)² - (7-✓5)² / (7)² - (✓5)²
=> (7)² + (✓5)² + 2 ×7 × ✓5 - { (7)² + (✓5)² - 2 × 7×✓5/ 49 - 5
=> 49 + 5 + 14✓5 - ( 49 + 5 - 14✓5) / 44
=> 49 + 5 + 14✓5 - 49 - 5 + 14✓5 / 44
=> 14✓5 + 14✓5/44
=> 28✓5/44
=> 4(7✓5) /44
=> 7✓5/11
Now,
LHS = RHS
7✓5 /11 = A + B✓5
Clearly,
A = 1 and B = 7/11
HOPE IT WILL HELP YOU...... :-)
7 + ✓5 / 7 - ✓5 - 7 - ✓5 / 7 + ✓5 = A + B✓5
LHS = 7 + ✓5/ 7 - ✓5 - 7 - ✓5 / 7 + ✓5
=> ( 7 + ✓5) ( 7 + ✓5) - ( 7 - ✓5 ) ( 7 - ✓5) / ( 7 + ✓5 ) ( 7 - ✓5)
=> (7+✓5)² - (7-✓5)² / (7)² - (✓5)²
=> (7)² + (✓5)² + 2 ×7 × ✓5 - { (7)² + (✓5)² - 2 × 7×✓5/ 49 - 5
=> 49 + 5 + 14✓5 - ( 49 + 5 - 14✓5) / 44
=> 49 + 5 + 14✓5 - 49 - 5 + 14✓5 / 44
=> 14✓5 + 14✓5/44
=> 28✓5/44
=> 4(7✓5) /44
=> 7✓5/11
Now,
LHS = RHS
7✓5 /11 = A + B✓5
Clearly,
A = 1 and B = 7/11
HOPE IT WILL HELP YOU...... :-)
Answered by
21
(7+√5)/(7-√5) - (7-√5)/(7+√5)
=> [(7+√5)² - (7-√5)²]/[7²-(√5)²]
=> [ (7+5+14√5)- (14+5-14√2)]/[49-5]
=> [ 7+5+14√5-7-5+14√5]/[44]
=> 28√5/44
=> 7√5/11
Then,
7√5/11 = a + b√5
On comparing, we get,
a = 0
b = 7/11
I hope this will help you
(-:
=> [(7+√5)² - (7-√5)²]/[7²-(√5)²]
=> [ (7+5+14√5)- (14+5-14√2)]/[49-5]
=> [ 7+5+14√5-7-5+14√5]/[44]
=> 28√5/44
=> 7√5/11
Then,
7√5/11 = a + b√5
On comparing, we get,
a = 0
b = 7/11
I hope this will help you
(-:
Similar questions