If 7 sin 0 = 24 cos ,
2 sin +cos O
Find the value of
3 sin 0-4 cos O
Answers
Step-by-step explanation:
7 sin θ = 24 cos θ .
(2 sin θ + cos θ) / (3 sin θ - 4 cos θ) = ?
→ 7 sin θ = 24 cos θ .
→ sin θ / cos θ = 24/7
→ tan θ = 24/7
now,
→ (2 sin θ + cos θ) / (3 sin θ - 4 cos θ)
dividing numerator and denominator by cos θ we get,
→ [(2sin θ/cos θ) + (cos θ/cos θ) / [(3sin θ/cos θ) - (4cos θ/cos θ)]
→ [2 tan θ + 1] / [3 tan θ - 4]
Putting value of tan θ now,
→ [(2*24/7) + 1] / [(3*24/7) - 4]
→ [(48/7) - 1] / [(72/7) - 4]
→ [(48 - 7)/7] / [(72 - 28)/7]
→ (41/7) / (44/7)
→ (41/7) * (7/44)
→ (41/44) (Ans.)
Step-by-step explanation:
(2 sin 0 + cos 0) / (3 sin 0-4 cos 0)
dividing numerator and denominator by cos e we get,
[(2sin 0/cos 8) + (cos 0/cos 0) / [(3sin 8/cos 8) - (4cos e/cos 8)]
- [2 tan 0 + 1] / [3 tan 0 - 4]
Putting value of tan 8 now,
→ [(2*24/7) + 1] / [(3*24/7) - 4]
[(48/7) - 1] / [(72/7) - 4]
[(48-7)/7] / [(72-28)/7] (41/7) / (44/7)
→ (41/7) * (7/44) -
-> (41/44) (Ans.)