Math, asked by Anonymous, 1 year ago

if 7 sin squared theta + 3 cos squared theta is equal to 4 find the value of sec theta+cosec theta

Answers

Answered by deenakhatri1974
117

Answer:

Step-by-step explanation:

Plz mark it as brainliest

Attachments:
Answered by mysticd
41

Answer:

Value \:of \\sec\theta+cosec\theta=\frac{2\sqrt{3}+6}{3}

Step-by-step explanation:

 Given\: 7sin^{2}\theta+3cos^{2}\theta=4

\implies 7sin^{2}\theta+3(1-sin^{2}\theta}=4

/* By Trigonometric identity:

cos²A = 1-sin²A */

\implies 7sin^{2}\theta+3-3sin^{2}\theta=4

\implies 4sin^{2}\theta=4-3

\implies sin^{2}\theta = \frac{1}{4}

\implies sin\theta = \sqrt{\frac{1}{4}}\\=\frac{1}{2}\\=sin30\degree

\implies \theta = 30\degree

Now,\\sec\theta+cosec\theta\\=sec30\degree +cosec30\degree\\=\frac{2}{\sqrt{3}}+2\\=\frac{2\sqrt{3}}{3}+2\\=\frac{2\sqrt{3}+6}{3}

Therefore,

Value \:of \\sec\theta+cosec\theta=\frac{2\sqrt{3}+6}{3}

•••♪

Similar questions