If 7 sin2θ+ cos2θ=44, show that tan=1/√3
Answers
Step-by-step explanation:
Given Question:-
If 7 sin2θ+ cos2θ=44, show that tan=1/√3
Correct Question:-
If 7 sin^2θ+ 3cos^2θ=4, show that
tan θ=1/√3
Solution:-
Given that :
7 Sin^2 θ + 3Cos^2 θ = 4
It can be written as
4Sin^2 θ + 3Sin^2 θ+ 3 Cos^2 θ = 4
=>4 Sin^2 θ +( 3 Sin^2 θ+3 Cos^2 θ) = 4
=>4 Sin^2 θ + 3( Sin^2 θ+ Cos^2 θ) = 4
we know that Sin^2 θ + Cos^2 θ = 1
=>4 Sin^2 θ + 3(1) = 4
=> 4Sin^2 θ + 3 = 4
=>4 Sin^2 θ = 4-3
=> 4Sin^2 θ = 1
=>Sin^2 θ = 1/4
=> Sin θ = √(1/4)
=>Sin θ = 1/2
=>Sin θ = Sin 30°
=> θ = 30°
The value of θ = 30°
Now , Tan θ
=>tan 30°
=>1/√3
Tan θ = 1/√3
Hence proved
Answer:-
If 7 sin^2θ+ 3cos^2θ=4, then tanθ =1/√3
Check:-
LHS:-
7 sin^2θ+ 3cos^2θ=4
If θ= 30° then
7 sin^2(30°) + 3 Cos^2(30°)
=>7(1/2)^2 + 3(√3/2)^2
=>7(1/4) + 3(3/4)
=>(7/4) + (9/4)
=>(7+9)/4
=>16/4
=>4
RHS
LHS = RHS is true for θ= 30°
Used formulae:-
- Sin^2 θ + Cos^2 θ = 1
- Sin 30° = 1/2
- Tan θ = 1/√3
- Cos 30° = √3/2
Notice,
7sin2θ+3cos2θ=4
7tan2θsec2θ+3sec2θ=4
7tan2θ+3sec2θ=4
7tan2θ+3=4sec2θ
7tan2θ+3=4(1+tan2θ)
7tan2θ+3=4+4tan2θ
3tan2θ=1
tan2θ=13
tanθ=±13√