if 7 sin²A + 3 cos²A = 4 then prove that sec A + cosec A = 2 × 2 /√3
Answers
Step-by-step explanation:
Given;
7 sin²A + 3 cos²A = 4;
To prove;
sec A + cosec A = 2 + 2 /√3;
Proof: From given;
7 sin²A + 3 cos²A = 4;
4 sin²A+3 sin²A + 3 cos²A = 4;
4 sin²A+3 (sin²A + cos²A) = 4;
4 sin²A+3 (1) = 4; (sin²A + cos²A=1)
4 sin²A = 4-3;
4 sin²A = 1;
sin²A = 1/4
sin A = 1/2;
Since, Cosec A = 1/sin A
Thus, Cosec A = 1/(1/2)
= 2 (i)
Again,
7 sin²A + 3 cos²A = 4;
7 sin²A + 3 cos²A = 4;
Add 4 cos²A on both side;
7 sin²A + 3 cos²A = 4;
7 sin²A+ 3cos²A+ 4 cos²A = 4 + 4cos²A;
7 sin²A+ 7 cos²A = 4 + 4cos²A;
7 (sin²A + cos²A) = 4 + 4cos²A;
7 (1) = 4 + 4cos²A; (sin²A + cos²A=1)
4cos²A = 7-4;
cos²A = 3/4
cos A = √3/2;
Since, Sec A =1/Cos A
Thus, Sec A = 2/√3. (ii)
From equation (i) and (ii);
Cosec A + Sec A = 2 + 2/√3;
This can also be written as;
Sec A + Cosec A = 2 + 2/√3;
That's all.