if 7 sin²theta +3cos²theta=4, show that tan theta=√⅓
Answers
Answered by
8
Hey !!!
7sin²¢ + 3cos²¢ = 4
{✔dividing by cos²¢ on both side }
= 7sin²¢ + 3cos²¢ /cos²¢ = 4/cos²¢
= 7tan²¢ + 3 = 4sec²¢
= 7tan²¢ + 3 = 4 ( 1 + tan²¢ )
{•°•sec²¢ = 1 + tan²¢ }
= 7tan²¢ + 3 = 4 +4tan²¢
= 3tan²¢ = 4 - 3
= tan²¢ = 1/3
=> tan¢ = +-√1/3 prooved
_________________________
Hope it helps you !!
@Rajukumar111
7sin²¢ + 3cos²¢ = 4
{✔dividing by cos²¢ on both side }
= 7sin²¢ + 3cos²¢ /cos²¢ = 4/cos²¢
= 7tan²¢ + 3 = 4sec²¢
= 7tan²¢ + 3 = 4 ( 1 + tan²¢ )
{•°•sec²¢ = 1 + tan²¢ }
= 7tan²¢ + 3 = 4 +4tan²¢
= 3tan²¢ = 4 - 3
= tan²¢ = 1/3
=> tan¢ = +-√1/3 prooved
_________________________
Hope it helps you !!
@Rajukumar111
TSParvathi:
tnx a lot
Answered by
5
Hi there!
Given :-
7 sin²θ + 3 cos²θ = 4
Dividing both sides of the Eqn. by cos²θ :-
⇒ 7 tan²θ + 3 = 4 / cos²θ
⇒ 7 tan²θ + 3 = 4 sec²θ
⇒ 7 tan²θ + 3 = 4(1 + tan²θ)
⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
⇒ 3 tan²θ = 1
⇒ tan²θ = 1 / 3
⇒ tanθ = ± √1 / 3
[ Hence Proved. ]
Hope it helps! :)
Given :-
7 sin²θ + 3 cos²θ = 4
Dividing both sides of the Eqn. by cos²θ :-
⇒ 7 tan²θ + 3 = 4 / cos²θ
⇒ 7 tan²θ + 3 = 4 sec²θ
⇒ 7 tan²θ + 3 = 4(1 + tan²θ)
⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
⇒ 3 tan²θ = 1
⇒ tan²θ = 1 / 3
⇒ tanθ = ± √1 / 3
[ Hence Proved. ]
Hope it helps! :)
Similar questions
Social Sciences,
8 months ago
English,
8 months ago
Math,
8 months ago
Math,
1 year ago
Math,
1 year ago