Math, asked by iiftva, 4 months ago

if 7 sinQ= 24 cosQ find the value of 2 sinQ+cosQ/3 sin Q-4 cosQ​

Answers

Answered by nevergiveup123
0

Answer:

i think this is your answer please check

Attachments:
Answered by pousalidolai59
4

Step-by-step explanation:

7 \sin(q)  = 24 \cos(q)  \\  =  >  \:  \frac{ \sin(q) }{ \cos(q) }  =  \frac{24}{7}   \\ =  >  \tan(q)  =  \frac{24}{7}  \\  \ =  >  \tan(q)  =  \frac{p}{b}  =  \frac{24}{7}

let \: p \: be \: 24 x \: \:  and \:  b \: be \: 7x \\ by \: using \: pythagoras \: theorem \:  \\  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  =  {(24x)}^{2}  +  {(7x)}^{2}  \\  = \:   {625x}^{2}  \\  =  > h \:  =  \sqrt{625 {x}^{2} }  \\  = 25x

therefore \:  \\  \sin(q)  =  \frac{24x}{25x}  =  \frac{24}{25}  \\  \cos(q)  =  \frac{7x}{25x}  =  \frac{7}{25}

2 sin \: q+cos \: q/3 sin \:  q-4 cos \: q \\  =  \frac{2 \times 24}{25}  +  \frac{ \frac{7}{25} }{ \frac{3 \times 24}{25} }  - 4 \times  \frac{7}{25}  \\  =  \frac{20}{25}  +  \frac{7}{72}  \\  =  \frac{1540 + 175}{1800}   \\  =  \frac{1715}{1800}

=343/360

Similar questions