Math, asked by simranraj18, 10 months ago

if 7^x-2+2352=7^x. Find the value of x.​

Answers

Answered by NishitDohare
7

Answer:x=4

Step-by-step explanation

Attachments:
Answered by Anonymous
90

Question :

Find the value of x .If

 \sf7 {}^{x - 2}  + 2352 = 7 {}^{x}

Solution :

 \sf7 {}^{x - 2}  + 2352 = 7 {}^{x}

 \sf \implies 7 {}^{x}  \times 7 {}^{ - 2}  + 2352  = 7 {}^{x}

Let  \sf7 {}^{x}  = y

 \sf \implies \: y \times  \dfrac{1}{49}  + 2352 = y

 \sf \implies \dfrac{y + 2352 \times 49}{49}  = y

 \sf \implies \: y + 115248 = 49y

 \sf \implies48y = 115248

 \sf \implies \: y =  \cancel{ \frac{115248}{48}} = 2401

 \sf \implies \: 7 {}^{x}  = 2401

 \sf \implies \: 7 {}^{x} = 7 {}^{4}

On camparing x = 4

Therefore, the value of x= 4

________________________

Exponents formula's :

 \sf1)y {}^{m}  \times y {}^{n}  = y {}^{m + n}

 \sf2) \dfrac{y {}^{m} }{y {}^{n} }  = y {}^{m - n}

 \sf3)y {}^{0}  = 1

Similar questions