Math, asked by patelsumit86112, 1 month ago

if 70th term is of ap is 0 then the ratio of 31st and 57th term is​

Answers

Answered by VishnuPriya2801
11

Answer:-

Given:-

70th term of an AP = 0

We know that,

nth term of an AP(aₙ) = a + (n - 1)d

So,

⟹ a + (70 - 1)d = 0

⟹ a + 69d = 0

⟹ a = - 69d -- equation (1).

We have to find:-

Ratio of 31st & 57th terms.

  • a₃₁ = a + (31 - 1)d = a + 30d
  • a₅₇= a + (57 - 1)d = a + 56d

Hence,

⟹ a₃₁ : a₅₇ = (a + 30d) : (a + 56d)

Substitute a = - 69d from equation (1).

⟹ a₃₁ : a₅₇ = ( - 69d + 30d) : (- 69d + 56d)

⟹ a₃₁ : a₅₇ = ( - 39d) : ( - 13d)

⟹ a₃₁ : a₅₇ = 39 : 13

⟹ a₃₁ : a₅₇ = 3 : 1

Answered by ItzShizuka50
69

Answer:

Given :

  • if 70th term is of ap is 0 then the ratio of 31st and 57th term is.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

To Find :

  • 31st and 57th term is?

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution :

We know that,

nth term of an AP ( aᵑ) = a + ( n - 1) d

So,

\mathsf\blue{ \implies \:a + (70 - 1)d = 0  }

\mathsf\blue{ \implies \:a + 69d = 0  }

\mathsf\blue{ \implies \:  (equation \: 1)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Then, find it

Ratio of 31st & 57th term.

  • a₃₁ = a+ ( 31 - 1 )d = a + 30d
  • a₅₇ = a + ( 57- 1)d = a+ 56d

now,

  • ➵a₃₁ : a₅₇ = ( a+ 30d) : ( a + 56d)
  • ➵a₃₁ : a₅₇ = ( -69d + 30d) : (-69d + 56d)
  • ➵a₃₁ : a₅₇ = ( -39d ) : ( -13d )
  • ➵a₃₁ : a₅₇ = 39 : 13

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Hence,

a₃₁ : a₅₇ = 39 : 13

Similar questions