if 70th term is of ap is 0 then the ratio of 31st and 57th term is
Answers
Answered by
11
Answer:-
Given:-
70th term of an AP = 0
We know that,
nth term of an AP(aₙ) = a + (n - 1)d
So,
⟹ a + (70 - 1)d = 0
⟹ a + 69d = 0
⟹ a = - 69d -- equation (1).
We have to find:-
Ratio of 31st & 57th terms.
- a₃₁ = a + (31 - 1)d = a + 30d
- a₅₇= a + (57 - 1)d = a + 56d
Hence,
⟹ a₃₁ : a₅₇ = (a + 30d) : (a + 56d)
Substitute a = - 69d from equation (1).
⟹ a₃₁ : a₅₇ = ( - 69d + 30d) : (- 69d + 56d)
⟹ a₃₁ : a₅₇ = ( - 39d) : ( - 13d)
⟹ a₃₁ : a₅₇ = 39 : 13
⟹ a₃₁ : a₅₇ = 3 : 1
Answered by
69
Answer:
❍ Given :
- if 70th term is of ap is 0 then the ratio of 31st and 57th term is.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
❍ To Find :
- 31st and 57th term is?
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
❍ Solution :
We know that,
☄nth term of an AP ( aᵑ) = a + ( n - 1) d
So,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Then, find it
☄Ratio of 31st & 57th term.
- a₃₁ = a+ ( 31 - 1 )d = a + 30d
- a₅₇ = a + ( 57- 1)d = a+ 56d
now,
- ➵a₃₁ : a₅₇ = ( a+ 30d) : ( a + 56d)
- ➵a₃₁ : a₅₇ = ( -69d + 30d) : (-69d + 56d)
- ➵a₃₁ : a₅₇ = ( -39d ) : ( -13d )
- ➵a₃₁ : a₅₇ = 39 : 13
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
❍ Hence,
➵a₃₁ : a₅₇ = 39 : 13
Similar questions
Math,
24 days ago
Geography,
24 days ago
Physics,
24 days ago
Computer Science,
1 month ago
Physics,
9 months ago
Computer Science,
9 months ago
English,
9 months ago