If 7128 = 2
× 3
× 11 Find the value of p +q+ r
Answers
Answered by
0
Answer:
According to question,
7128 = {2}^{p} {3}^{q} {11}^{r}7128=2
p
3
q
11
r
Lets split 7128 into its factor
\begin{gathered}7128 = 2 \times 3564 \\ 3564 = 2 \times 1782 \\ 1782 = 2 \times 891 \\ 891 = 3 \times 297 \\ 297 = 3 \times 99 \\ 99 = 3 \times33 \\ 33 = 3 \times 11\end{gathered}
7128=2×3564
3564=2×1782
1782=2×891
891=3×297
297=3×99
99=3×33
33=3×11
So,
7128 = {2}^{3} {3}^{4} {11}^{1}7128=2
3
3
4
11
1
So,
p=3
q=4
r=1
so, pqr=12
Hope it helps you
Answered by
0
Answer:
Ok I know it
Step-by-step explanation:
7128=2
7128/2=3564
3564×3=10692
3564×11/10692=11/3
p=11
Q=3
So,r =3564/3
=1782
Similar questions