Math, asked by divyanithiarun, 2 months ago

If (7a+8b)(7c-8d)=(7a-8b)(7c+8d) . prove that a:b=c:d​

Answers

Answered by sangeetakarwasra9630
0

Answer:

Yes you are right that a:b=c:d

Answered by Anonymous
4

Step-by-step explanation:

Now,

\mathrm{(7a+8b)(7c-8d)=(7a-8b)(7c+8d)}

\Rightarrow \mathrm{\dfrac{7a+8b}{7a-8b}=\dfrac{7c+8d}{7c-8d}}

Using Componendo - Dividendo method, we get

\mathrm{\dfrac{(7a+8b)+(7a-8b)}{(7a+8b)-(7a-8b)}=\dfrac{(7c+8d)+(7c-8d)}{(7c+8d)-(7c-8d)}}

\Rightarrow \mathrm{\dfrac{7a+8b+7a-8b}{7a+8b-7a+8b}=\dfrac{7c+8d+7c-8d}{7c+8d-7c+8d}}

\Rightarrow \mathrm{\dfrac{14a}{16b}=\dfrac{14c}{16d}}

\Rightarrow \mathrm{\dfrac{a}{b}=\dfrac{c}{d}}

\Rightarrow \mathrm{a:b=c:d}

Hence proved.

Similar questions