if 7A = π, prove that cosA cos2A cos3A = 1/8
Answers
Answered by
13
HEY MATE HERE IS YOUR ANSWER
☺☺☺
given: 7A = 180.........(1)
LHS of the given equation is:
cosAcos2Acos3A=cosAcos2Acos(180−4A) [since 3A=180−4A]=cosAcos2A*[−cos4A]=−cosAcos2Acos4A=−12sinA(2sinAcosA)cos2Acos4A [multiplying and dividing by 2sinA=−12sinA*sin2Acos2Acos4A=−14sinA(2sin2Acos2A)cos4A=−14sinAsin4Acos4A=−18sinA(2sin4Aco4A)
=−18sinA*sin8A=−18sinA*sin(7A+A)=−18sinA*sin(180+A)=−18sinA*(−sinA)=18
= RHS
hope this helps you
☺☺
PLEASE CHOOSE AS BRAINLIEST
☺☺☺
☺☺☺
given: 7A = 180.........(1)
LHS of the given equation is:
cosAcos2Acos3A=cosAcos2Acos(180−4A) [since 3A=180−4A]=cosAcos2A*[−cos4A]=−cosAcos2Acos4A=−12sinA(2sinAcosA)cos2Acos4A [multiplying and dividing by 2sinA=−12sinA*sin2Acos2Acos4A=−14sinA(2sin2Acos2A)cos4A=−14sinAsin4Acos4A=−18sinA(2sin4Aco4A)
=−18sinA*sin8A=−18sinA*sin(7A+A)=−18sinA*sin(180+A)=−18sinA*(−sinA)=18
= RHS
hope this helps you
☺☺
PLEASE CHOOSE AS BRAINLIEST
☺☺☺
innusingh:
thank u so much
Answered by
0
Answer:
: )
Step-by-step explanation:
this is your answer
;)
Attachments:
Similar questions
Biology,
7 months ago
Math,
1 year ago
Physics,
1 year ago
Computer Science,
1 year ago
English,
1 year ago