Math, asked by hannamol, 6 months ago

If 7secA=25, then the value of cosec²A—cot²A is______​

Answers

Answered by Anonymous
20

Given:

  • 7 secA = 25

Find:

  • cosec² A - cot² A

Solution:

⇒ 7 secA = 25

⇒ sec A \rm =\dfrac{25}{7} = \dfrac{H}{B}

So,

  • Hypotenuse, H = 25
  • Base, B= 7

So,

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{0.5mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1){\framebox(0.3,0.3)}\put(0.7,4.6){\large\bf C}\put(.8,0.6){\large\bf B}\put(5.6,0.6){\large\bf A}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7)\put(4,1.4){$ \bf\Theta$} \put(3,0.5){ \bf 7} \put(3,3){ \bf 25} \put(1.4,1){\line(0,1){0.4}} \put(1,1.4){\line(1,0){0.4}} \end{picture}

Now,

we, know that

 \boxed{\rm H^2 = P^2 + B^2}

where,

  • H = 25
  • B = 7

So,

 :\to\rm H^2 = P^2 + B^2 \\  \\

 :\to\rm (25)^2 = P^2 + (7)^2 \\  \\

 :\to\rm 625= P^2 + 49 \\  \\

 :\to\rm 625 - 49= P^2 \\  \\

 :\to\rm 576= P^2 \\  \\

 :\to\rm  \sqrt{576}= P \\  \\

 :\to\rm 24= P \\  \\

 :\to\rm P = 24\\  \\

  \therefore\rm P = 24\\  \\

_________________________

Now,

 \to \rm \cosec A = \dfrac{H}{P}

where,

  • H = 25
  • P = 24

So,

 \to \rm \cosec A = \dfrac{H}{P} \\

 \to \rm \cosec A = \dfrac{25}{24} .......1\\

Now,

 \to \rm \cot A = \dfrac{ B}{P}

where,

  • B = 7
  • P = 24

So,

 \to \rm \cot A = \dfrac{ B}{P} \\

 \to \rm \cot A = \dfrac{7}{24} ........2\\

we, have to find value of

 \rm \dashrightarrow   { \cosec}^{2} A -  { \cot}^{2} A \\  \\

Using eq(1) and eq(2) here, we get

 \rm \dashrightarrow  { \bigg(\dfrac{25}{24} \bigg) }^{2}  -  {  \bigg(\dfrac{7}{24} \bigg)}^{2} \\  \\

 \rm \dashrightarrow \dfrac{625}{576}-  \dfrac{49}{576} \\  \\

 \rm \dashrightarrow \dfrac{576}{576}\\  \\

 \rm \dashrightarrow 1\\  \\

_________________________

 \rm \therefore { \cosec}^{2} A -  { \cot}^{2} A =  1\\  \\

Attachments:
Similar questions