Math, asked by sathishmanoj2004, 9 months ago

if 7sin^2 theta +3 cos^2 theta = 4 then the value tan theta​

Answers

Answered by rishu6845
4

Answer:

\boxed{\bold{tan \alpha  =  \dfrac{1}{ \sqrt{3} } \: \:  \:  \:  or \:  -  \dfrac{1}{ \sqrt{3} }}}

Step-by-step explanation:

\bold{Given}\longrightarrow \\ 7 {sin}^{2}  \alpha  + 3 {cos}^{2}  \alpha  = 4

\bold{To \: find}\longrightarrow \\ value \: of \: tan \alpha

\bold{Concept \: used}\longrightarrow \\ \boxed{ {sin}^{2}  \alpha  = 1 -  {cos}^{2}  \alpha}  \\ \boxed{tan(\pi -  \alpha ) =  - tan \alpha}

\bold{Solution}\longrightarrow \\ 7 {sin}^{2}  \alpha  + 3 {cos}^{2}  \alpha  = 4

 =  > 7(1 -  {cos}^{2}  \alpha ) + 3 {cos}^{2}  \alpha  = 4

 =  > 7 - 7 {cos}^{2}  \alpha  + 3 {cos}^{2}  \alpha  = 4

 =  >  - 4 {cos}^{2}  \alpha  = 4 - 7

 =  >  - 4 {cos}^{2}  \alpha  =  - 3

 =  >  {cos}^{2}  \alpha  =  \dfrac{3}{4}

 =  > cos \alpha  = \pm \dfrac{ \sqrt{3} }{2}

if \: cos \alpha  =  \dfrac{ \sqrt{3} }{2 }  \\  =  > cos \alpha  = cos \dfrac{\pi}{6}  \\  =  >  \alpha  =  \dfrac{\pi}{6}  \\ tan \alpha  = tan \dfrac{\pi}{6}  \\  =  > tan \alpha  =  \dfrac{1}{ \sqrt{3} }

if \: cos \alpha  =  -  \dfrac{ \sqrt{3} }{2}  \\  =  > cos \alpha  = cos \dfrac{5\pi}{6}  \\ =  >   \alpha  =  \dfrac{5\pi}{6}  \\  =  > tan \alpha  = tan \dfrac{5\pi}{6}  \\  =  > tan \alpha  = tan(\pi -  \dfrac{\pi}{6} ) \\  =  > tan \alpha  =  - tan \dfrac{\pi}{6}  \\  =  > tan \alpha  =  -  \dfrac{1}{ \sqrt{3} }

Similar questions