Math, asked by atmanraja8746, 1 year ago

If 7sin^2 theta+3cos2theta=4 then the value of tan^2theta

Answers

Answered by jayapundir29
0
HEYA !!!

✌✌✌

As,

 7sin^2Φ +  3cos^2Φ = 4

Then,

 7sin^2Φ =  3sin^2Φ  4sin^2Φ

Now,

 3sin^2Φ +  4sin^2Φ +  3cos^2Φ = 4

As,  Sin^2Φ +  Cos^2Φ = 1

So,

 4sin^2Φ + 3(1) = 4

 4sin^2Φ = 4 - 3

 sin^2Φ = \frac{1}{4}

SinΦ = 1/√4

...

Now,

 Tan^2Φ =  sin^2Φ /  cos^2Φ

So,

 Tan^2Φ = (1/4) / (1-sin^2Φ)

 Tan^2Φ = (1/4) / (1-1/4)

 Tan^2Φ = (1/4) / (3/4)

 Tan^2Φ = \frac{4}{12}

 Tan^2Φ = \frac{1}{3}

....

THANKS..
Answered by Anonymous
0

Step-by-step explanation:

Answer :-

→ tan30° = 1/√3

Step-by-step explanation :-

We have,

→ 7 sin² ∅ + 3 cos² ∅ = 4 .

⇒ 4 sin²∅ + 3 sin²∅ + 3 cos²∅ = 4 .

⇒ 4 sin²∅ + 3( sin²∅ + cos²∅ ) = 4 .

⇒ 4 sin²∅ + 3( 1 ) = 4 . [ ∵ sin²∅ + cos²∅ = 1 ] .

⇒ 4 sin²∅ + 3 = 4 .

⇒ 4 sin²∅ = 4 - 3 .

⇒ 4 sin²∅ = 1 .

⇒ sin²∅ = 1/4 .

⇒ sin ∅ = √(1/4) .

∴ sin ∅ = 1/2 .

But, sin 30° = 1/2 .

Then, sin ∅ = sin 30° .

 \huge \pink{ \boxed{ \it \therefore \theta = 30 \degree.}}

Then, tan 30° = 1/√3 .

Hence, it is proved .

Similar questions