Math, asked by fussion4376, 1 year ago

If 7sin^2a +3cos^2a=4, then prove that seca + coseca=2/3^1/2+2

Answers

Answered by BEJOICE
11

given \:  \: 7  { \sin}^{2} a + 3 { \cos }^{2}a  = 4 \\ 4 { \sin }^{2} a + 3 {sin}^{2} a + 3 {cos}^{2} a = 4 \\ 4 {sin}^{2} a = 4 - 3 \times 1 = 1 \\  {sin}^{2} a =  \frac{1}{4}  \\ sina =  +  \: or \:  -  \frac{1}{\sqrt{2} }
cosa =  \sqrt{1 -  {sin}^{2} a}  =  +  \: or \:  -  \frac{ \sqrt{3} }{2}
seca + coseca =  \frac{1}{cosa} +  \frac{1}{sina}   \\ taking \: positive \: values \: (by \:  \\ assuming \: a \: is \: in \: first \: quadrant) \\  =  \frac{2}{ \sqrt{3} }  + 2

Answered by hukam0685
4

Answer:

sec \: a + cosec \: a =  \frac{2}{ \sqrt{3} }  + 2 \\ \:

Step-by-step explanation:

If

7 {sin}^{2} a + 3 {cos}^{2} a = 4 \\

To prove:

sec \: a + cosec \: a =  \frac{2}{ \sqrt{3} }  + 2 \\  \\

As we know that

 {sin}^{2} a = 1 -  {cos}^{2} a \\  \\

put this value in given condition

7 {sin}^{2} a + 3 {cos}^{2} a = 4 \\ \\ 7 (1 - {cos}^{2} a) + 3 {cos}^{2} a = 4 \\ \\ 7 - 7 {cos}^{2} a + 3 {cos}^{2} a = 4 \\  \\  - 4{cos}^{2} a =  - 3 \\  \\ {cos}^{2} a =  \frac{3}{4}  \\  \\ cos \: a =  \frac{ \sqrt{3} }{2}  \\  \\ so \\  \\ sec \: a =  \frac{2}{ \sqrt{3} }  \\  \\

put the value of cos a in given condition to find the value of sin a

7 {sin}^{2} a + 3 \times  \frac{3}{4}  = 4 \\  \\ 7 {sin}^{2} a = 4 -  \frac{9}{4}  \\  \\ 7 {sin}^{2} a =  \frac{7}{4}  \\  \\  {sin}^{2} a =  \frac{1}{4}  \\  \\ sin \: a =  \frac{1}{2}  \\  \\ so \\  \\ cosec \: a = 2 \\  \\

Thus

sec \: a + cosec \: a =  \frac{2}{ \sqrt{3} }  + 2 \\  \\

Hence proved.

Hope it helps you.

Note*: Assuming all values in first Quadrant.

Similar questions