Math, asked by Anonymous, 10 months ago

If 7sin²∅ + 3cos²∅ = 4, show that tan∅ = 1/√3​

Answers

Answered by Anonymous
10

\sf\orange{Given:}

\sf{7sin^{2}\theta+3cos^{2}\theta=4}

\sf\red{To \ prove:}

\sf{tan\theta=\frac{1}{\sqrt3}}

\sf\green{\underline{\underline{Proof:}}}

\sf{7sin^{2}\theta+3cos^{2}\theta=4}

\sf\blue{cos^{2}\theta=1-sin^{2}\theta}

\sf\blue{... Trigonometric \ identity}

\sf{\therefore{7sin^{2}\theta+3(1-sin^{2}\theta)=4}}

\sf{\therefore{7sin^{2}\theta+3-3sin^{2}\theta=4}}

\sf{\therefore{4sin^{2}\theta=4-3}}

\sf{\therefore{4sin^{2}\theta=1}}

\sf{\therefore{sin^{2}\theta=\frac{1}{4}}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{sin\theta=\frac{1}{2}}

\sf{But, \ sin30°=\frac{1}{2}}

\sf{\therefore{\theta=30°}}

\sf{we \ know, \ tan30°=\frac{1}{\sqrt3}}

\sf{\therefore{tan\theta=\frac{1}{\sqrt3}}}

Answered by Anonymous
84

\huge\red{Answer}

Solution :-

7sin²∅ + 3cos²∅ = 4

= = > 4sin²∅ + 3sin²∅ + 3cos²∅ = 4

= = > 4sin²∅ + 3( sin²∅ + cos²∅) = 4

= = > 4sin²∅ + 3 × 1 = 4 [sin²∅ + cos²∅ = 1]

= = > 4 sin²∅ = 1

= = > sin²∅ = 1/4

Therefore cos²∅ = (1-sin²∅) = (1-1/4) = 3/4

tan²∅ = sin²∅/cos²∅ = (1/4 × 4/3) = 1/3

Hence, tan ∅ = 1/3

Similar questions