If 7sin²x +3cos²x=4, then find the value of tan x
Answers
Answer:
The answer will be 1 / .
Explanation:
We have given;
7sin²x +3cos²x=4;
Now, we will separate 7sin²x;
Just like this;
4sin²x + 3sin²x + 3cos²x = 4; (here, 4sin²x + 3sin²x = 7sin²x);
Now, 3(sin²x + cos²x) + 4sin²x = 4;
3 (1) + 4sin²x = 4; (since, sin²x + cos²x = 1)
4sin²x = 4 - 3;
4sin²x = 1;
sin²x = 1 / 4; (i)
sinx = 1/2; (ii)
Now, according to a trigonometric ratio;
sin²x + cos²x = 1
Now, put the equation (i) in the ratio;
1/4 + cos²x = 1;
cos²x = 1 + 1/4;
cos²x = 5/4;
cos x = ; (iii)
Now, tan x = sin x / cos x;
Now, from equation (ii) and (iii);
tan x = (1/2) / ( );
= ;
That's all.