Math, asked by itsrhea, 9 months ago

If 7tanA=4, then find the value of :
7SinA - 3CosA / 7 SinA + 3CosA​

Answers

Answered by prasanth1112
1

Step-by-step explanation:

The answer for the question is 1/7..!!!!

Attachments:
Answered by waqarsd
0

Answer:

 \frac{1}{7}

Step-by-step explanation:

given \:  \: 7 \tan(x)  = 4 \\  \\ and \\  \\  \frac{7 \sin(x) - 3 \cos(x)  }{7 \sin(x) + 3 \cos(x)  }  \\  \\ divide \: by \: cosx \\  \\  = \frac{ \frac{7 \sin(x) - 3 \cos(x) }{ \cos(x) } }{ \frac{7 \sin(x) + 3 \cos(x) }{ \cos(x) } } \\  \\  =  \frac{7 \tan(x)  - 3}{7 \tan(x) + 3 }  \:  \:  \:  \: since \:  <  \frac{ \sin(x) }{ \cos(x) }  =  \tan(x)  >  \\  \\  =  \frac{4 - 3}{4 + 3}  \\  \\  =  \frac{1}{7}  \\  \\

HOPE IT HELPS

Similar questions