Math, asked by rmdolic11, 1 month ago

if |7x-19|>(or)=3 then x​

Answers

Answered by varadad25
0

Answer:

\displaystyle{\boxed{\red{\sf\:x\:\geq\:\dfrac{22}{7}}}\sf\:\quad\:OR\:\quad\:\boxed{\red{\sf\:x\:\leq\:\dfrac{16}{7}}}}

Step-by-step-explanation:

The given inequality is

\displaystyle{\sf\:|\:7x\:-\:19\:|\:\geq\:3}

We have to find the value of x.

Now,

\displaystyle{\sf\:|\:7x\:-\:19\:|\:\geq\:3}

\displaystyle{\implies\sf\:7x\:-\:19\:\geq\:3\:\quad\:OR\:\quad\:7x\:-\:19\:\leq\:-\:3}

\displaystyle{\implies\sf\:7x\:\geq\:3\:+\:19\:\quad\:OR\:\quad\:7x\:\leq\:-\:3\:+\:19}

\displaystyle{\implies\sf\:7x\:\geq\:22\:\quad\:OR\:\quad\:7x\:\leq\:16}

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:x\:\geq\:\dfrac{22}{7}}}}\sf\:\quad\:OR\:\quad\:\underline{\boxed{\red{\sf\:x\:\leq\:\dfrac{16}{7}}}}}

\displaystyle{\therefore\:\boxed{\blue{\sf\:\dfrac{16}{7}\:\geq\:x\:\geq\:\dfrac{22}{7}\:}}}

The solution set in interval notation can be written as

\displaystyle{\boxed{\pink{\sf\:x\:\in\:\left(\:-\:\infty\:,\:\dfrac{16}{7}\:\right]\:\cup\:\left[\:\dfrac{22}{7}\:,\:\infty\:\right)\:}}}

Answered by preetisinghallavanya
7

Step-by-step explanation:

The solution set in interval notation can be written as

Attachments:
Similar questions