Math, asked by solidgamer108, 9 hours ago

If 7x -2 ,3x-2 ,x+2 are consecutive terms of an AS ,then
a) Find the terms
b) Find the common difference

Answers

Answered by mathdude500
4

Appropriate Question

If 7x -2 ,3x-2 ,x+2 are consecutive terms of an AP, then

a) Find the terms

b) Find the common difference

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\:7x -2, \: 3x-2, \: x+2 are \: in \:  AP}

We know,

Three terms a, b, c are in AP iff b - a = c - b, i.e. common difference between the consecutive terms is same.

So, using this, we get

\rm :\longmapsto\:(3x - 2) - (7x - 2) = x + 2 - (3x - 2)

\rm :\longmapsto\:3x - 2 - 7x  +  2= x + 2 - 3x  + 2

\rm :\longmapsto\: - 4x =  - 2x  + 4

\rm :\longmapsto\: - 4x + 2x  = 4

\rm :\longmapsto\: - 2x  = 4

\rm \implies\:\boxed{\tt{  \: x \:  =  \:  -  \: 2 \: }}

So, terms of AP are as follow

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{7x - 2 =  - 14 - 2 =  - 16}  \\ \\ &\sf{3x - 2 =  - 6 - 2 =  - 8} \\ \\ &\sf{x + 2 =  - 2 + 2 = 0} \end{cases}\end{gathered}\end{gathered}

So,

Common difference, d = - 8 - (- 16) = - 8 + 16 = 8

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Answered by EmperorSoul
12

Appropriate Question

If 7x -2 ,3x-2 ,x+2 are consecutive terms of an AP, then

a) Find the terms

b) Find the common difference

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\:7x -2, \: 3x-2, \: x+2 are \: in \:  AP}

We know,

Three terms a, b, c are in AP iff b - a = c - b, i.e. common difference between the consecutive terms is same.

So, using this, we get

\rm :\longmapsto\:(3x - 2) - (7x - 2) = x + 2 - (3x - 2)

\rm :\longmapsto\:3x - 2 - 7x  +  2= x + 2 - 3x  + 2

\rm :\longmapsto\: - 4x =  - 2x  + 4

\rm :\longmapsto\: - 4x + 2x  = 4

\rm :\longmapsto\: - 2x  = 4

\rm \implies\:\boxed{\tt{  \: x \:  =  \:  -  \: 2 \: }}

So, terms of AP are as follow

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{7x - 2 =  - 14 - 2 =  - 16}  \\ \\ &\sf{3x - 2 =  - 6 - 2 =  - 8} \\ \\ &\sf{x + 2 =  - 2 + 2 = 0} \end{cases}\end{gathered}\end{gathered}

So,

Common difference, d = - 8 - (- 16) = - 8 + 16 = 8

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions