Math, asked by movloggs12345, 11 months ago

If 8 cot teta =7, check wether (1+sin teta)(1-sin teta)/(1+cos teta)(1-cos teta)=cot^2 teta or not

Answers

Answered by Uniquedosti00017
1

Answer:

yes it is true.

8 \cot( \alpha )  = 7 \\  =  >  \cot( \alpha )  =  \frac{8}{7}  \\ now \\   \\  \frac{1 +  \sin( \alpha )  \times (1 -  \sin( \alpha ) }{1 +  \cos( \alpha )   {?}^{2} \times (1 -  \cos( \alpha ) )}  \\  =   \frac{ {1}^{2}  -  { \sin( \alpha ) }^{2} }{ {1}^{2}  -  { \cos( \alpha ) }^{2} }  \\  =   \frac{ \cos( \alpha ) }{ { \sin( \alpha ) }^{2} }  \\  =  { \cot( \alpha ) }^{2}  \\

here I have written alpha in place of theta so , don't get confused.

Similar questions